
HCE security implications
Analyzing the security aspects of HCE

January 8th, 2014

White paper - HCE security implications, analyzing the security aspects of HCE

About the authors: Thom Janssen is Managing Consultant with UL Transaction Security

(UL). Prior to joining UL Thom has worked 8 years as a Business Consultant Mobile

Networks. In this role he has helped leading Mobile Network Operators in a wide variety

of projects, such as technology strategy, next-generation network trials and network

quality measurement and improvement. At UL he focuses on mobile payments.

Mark Zandstra is currently finalizing his master thesis at UL with a focus on the

comparison between HCE and SE-based NFC solutions. After obtaining his master’s

degree in Computing Science, he will start as a Technical Consultant in the Mobile &

Payment Practice of UL.

On October 31st 2013, Google introduced

the latest version of its mobile Operating

System, Android 4.4 KitKat. KitKat

included a new Near Field Communication

(NFC) feature: Host-based Card Emulation

(HCE). HCE has garnered quite some

attention in the NFC and mobile payment

industry, because it opens up the

possibility to perform NFC card emulation

without using the Secure Element (SE)

in Mobile handsets. Industry attention

is further increased by a first major

implementation of HCE, by Google for an

SE-less NFC payment system in its Google

Wallet offering.

UL believes that HCE may accelerate the

introduction of NFC services, because it

provides an optional more-simple-but-

less-secure way to provide an NFC card

emulation service. It has great added value

for Service Providers (SPs) that can accept

a reduced level of security in exchange for

an improvement of other factors such as

time to market, development costs and

the need to cooperate with other parties.

These SPs must however be fully aware of

the security risks caused by the lack of the

hardware-based security as provided by

the SE.

1. NFC for card emulation

NFC is a short range wireless technology

that allows communication between two

devices over short distances of up to ten

centimeters. Based on this technology,

devices like mobile phones are able

to communicate wirelessly with each

other. NFC combined with enhanced

security mechanisms enables the use of

“virtualized” smartcards on mobile devices

such as handsets. The security of NFC card

emulation is traditionally based on the use

of an SE, i.e. a tamper-resistant chip inside

the handset in which the card emulation

solution can perform cryptography and

store its sensitive data in a secure and

trusted environment.

HCE security implications

page 2

page 3

White paper - HCE Security Implications, analyzing the security aspects of HCE

 1. Forecast by ABI Research, March 2013. 2. See other UL white papers on this topic, e.g. “How to Win the Wallet War?”
3. Note that RIM’s Blackberry already implemented HCE in 2011. This paper focuses however on HCE as implemented in Android KitKat because it

currently dominates the market for NFC-enabled handsets. 4. Note that not all NFC chips support AID routing. In case AID routing is not supported,
HCE will be available, and the NFC Controller will route all Card Emulation Mode requests by a terminal to the SE.

NFC is now supported on many types of

handsets, and forecasts state that 500

million NFC-enabled handsets and other

devices will be on the market in 20141.

Due to the secure capabilities of

SE-based card emulation using NFC,

many parties have become aware of this

technology as an enabler for “mobile

wallet” functionalities: payment, loyalty,

couponing, ID, transit and access control,

all combined inside the mobile handset

of the end-user2. The SE can be present

in three form-factors; UICC (i.e. the SIM

card), embedded SE (separate hardware

chip on handset) or a secure SD-card.

The SD-card option has proven difficult

because it is often provisioned by a single

SP. A user wanting to use emulated cards

from multiple SPs must switch SD-cards.

The other SE types – UICC and embedded

SE – are typically not controlled by the SPs.

This means that these SPs must interact

with the issuers of the SE, which has

proven to add significant complexity to

the development and provisioning of NFC

card emulation services. HCE promises to

change that.

2. HCE technical functionality

NFC has three operation modes: Reader/

Writer Mode for reading/writing data

from/to a tag, Peer-to-Peer Mode for

communication between two devices

and Card Emulation Mode for emulating

a smartcard. To enhance security, Card

emulation makes use of an SE. The NFC

Controller, a chip inside the mobile device,

makes routing decisions based on the

NFC modes. The first two modes (Reader/

Writer and Peer-to-Peer) are routed to the

host CPU, while Card Emulation Mode

is routed to an SE. Android KitKat’s HCE

changes this3. It allows that commands in

Card Emulation Mode can be routed to an

HCE service on the host CPU. As shown

in the Figure below this is optional – it

remains possible to still route commands

in Card Emulation Mode to an SE.

Both HCE services and off-host (i.e.

SE-based) services must register the

Application ID (AID) that they would like

to handle in their corresponding Android

manifest, which is fixed at the time of

installation. In Android KitKat, the default

route for NFC services is to the host. In

order for SE-based NFC services to be

found, the Android OS registers their AIDs

in a routing table on the NFC controller.

When a terminal selects an AID the

communication will be routed by default

to the host or – in case the AID is present

in the routing table – to the SE. As a

consequence, existing SE implementations

will have to be adapted when a handset

is upgraded to Android KitKat in order to

remain accessible4.

Android KitKat defines two categories

for NFC services: Payment and Other.

Payment services – both HCE as SE-based

– should register in the payment category.

In the Android settings menu there is a Tap

& Pay setting where a default payment

application can be selected. This setting

is independent from default payment

selection settings that exist within wallet

applications. Avoiding conflicts in the

default payment setting requires special

attention from developers.

HCE introduces new security risks, which

we will discuss in Section 3. In addition to

the security concerns, we identify a set of

potential functionality issues caused by

HCE:

1. Existing SE implementations will have

to be registered in the NFC controller’s

routing table when a handset is upgraded

to KitKat, in order to be found by the NFC

controller.

2. The routing table on the NFC controller

can be modified from the Android OS

domain. This introduces a Denial-of-Ser-

vice threat in case the routing of existing

NFC services can be changed by a malware

application. This risk may well be limited to

rooted devices, as legitimate applications

require explicit user interaction to

change these settings. See Section 3 for a

discussion about rooted devices and the

associated risks.

3. An SP using an SE-based NFC solution

can allow transactions to be made while

inactive, switched off or even without

battery power, as long as no user-input is

required. While this option exists, some

Figure 1: Android operating with both SE-based

and Host-based Card Emulation

page 4

White paper - HCE Security Implications, analyzing the security aspects of HCE

5. Whether SE-based implementations of these services will work on an Android KitKat handset is unknown to us at this point in time.

SPs of current mobile payment implementations choose to avoid it; for security reasons

they require that a device is activated and unlocked. If an NFC service uses HCE to run on

the host processor, the option to perform transactions with a switched-off device is no

longer possible as the host must be activated (although no unlocking is required).

4. The Tap & Pay settings may lead to confusion for the end-user. It introduces a second

location to select a default payment application, next to any other payment applications

(such as wallets) that are installed on the handset. The Android API includes a function to

check whether the running application is the default payment application. Developers can

use this function to prevent confusion regarding the default payment application.

5. Most NFC solutions that are using MIFARE (currently in use by a wide variety of services

such as transit and access control) or Calypso cannot work as HCE service5 in current

combinations of Android software and NFC hardware This may be addressed in future

Android releases and/or NFC hardware versions.

3. HCE-related security risks compared to SE-based NFC

Android KitKat supplies the new communication channel from the contactless card

reader to the host CPU, which enables HCE. In HCE communication always passes through

the Android OS. This provides basic security measures (for instance by running each

application in its own “sandbox” which prevents that it can access data from any other

application).These basic security features are however lost when a handset is rooted.

Rooting is the process of allowing users of handsets, tablets, and other devices to attain

privileged control, e.g. become a super-user.

We see three ways in which this introduces security risks which are not present in

SE-based NFC services:

1. The user can root the device. As a consequence, the user can access all information

stored in applications, including sensitive information such as payment credentials.

Typically, in payment and transit applications the SP wants to prevent such user access, for

instance because it implies malware could also access this data. Estimates are that only a

small minority of Android handsets is rooted – but this minority still adds up to millions of

devices.

2. Malware could emerge that can root the device. For previous Android versions, Android

exploits have emerged that root the phone from a malware application. While these

exploits had a limited reach (the malware was not available from official download

channels), it is a potential risk that has to be considered. It has proven to be difficult to

fix an identified exploit in Android due to the long Android update process: new Android

versions typically take a long time to reach the majority of handsets, while a substantial

page 5

White paper - HCE Security Implications, analyzing the security aspects of HCE

6. Statistics from http://developer.android.com, December 2013.
7. Mobile MasterCard PayPass Application Note #6.

set of handset types are not updated

to the new version at all. For example,

estimates are that currently around 24% of

Android devices are still running Android

2.3.3-2.3.7 6, a version available since

February 2011. If an exploit would appear

in the future, it may therefore take a long

time for a fix to be installed on all devices.

3. In a situation where a handset is lost or

stolen, a malicious user can root the device

or access device memory by connecting it

to another device. This malicious user can

then gain access to all information stored

within the application. This introduces

severe risks. For instance, the malicious

user can use the sensitive information in

his own payment application to conduct

fraudulent payments.

The basic security features of Android

offer limited security, which can be

circumvented relatively easily by rooting

the device.

4. Mitigation techniques for
HCE-related security risks

Mitigating the HCE-related security risks

can be done in two different ways. One

is providing a more secure location for

storing sensitive data and the other is

applying security mechanisms to make the

location more secure.

4.1 Locations to store sensitive data

The HCE service runs within the Android

OS. An SP may require a more secure

location to store credentials, generate

and process the communication and

perform cryptography. We identify four

basic location options, which have a

different balance between risk mitigation

and associated costs. These options are

illustrated in Figure 2.

4.1.1 Host

This is the basic approach, i.e. storing and

processing occurs within the application

running on Android OS on the host. Apart

from Android security mechanisms such

as sandboxing, no additional security is

added in terms of location for storage and

processing.

4.1.2 Cloud-based SE

In this approach, storage and processing

of the sensitive data is done in a server

somewhere in the “cloud”, to which

the NFC device can make a connection.

This connection is therefore essential to

activate the NFC service. Of course, an

internet connection might not always

be available and the speed of a mobile

connection might cause latency issues.

A mobile payment transaction must be

completed within narrow time limits, for

example 400 ms for MasterCard PayPass

M/Chip or 170 ms for PayPass magstripe7.

Figure 2: Storage options for sensitive data in
HCE services

Cloud authentication challenges

Today’s mobile banking applications
face a similar challenge with
authentication to the cloud as the
card emulation approaches described
in this white paper. Yet, many mobile
banking applications do not require
an SE on the mobile phone and
therefore accept the security offered
by cloud-based solutions. There
are however important differences
between mobile banking and mobile
payments which can explain the
different security requirements. For
instance, mobile payments require
that transactions are possible to a
very wide range of counterparties
(merchants) without too much
hassle with real-time verification
mechanisms etc. In mobile banking
applications typically transactions
can be limited to a subset of bank
accounts, triggering additional
security mechanisms for transfers
above a certain limit or to an
unknown bank account. Also, in
money transfers done in mobile
banking the liability for a security
breach often lies with the party
that also suffers the damage of
the breach. This party can make his
own risk assessment and security
design of his mobile banking service,
to a large extent independent
of scheme regulations. This is in
contrast to mobile payments,
where multiple parties play a role
in the chain (four-corner model)
which means that parties must
make arrangements for who is
liable in which case. This creates the
need for certification, which puts
requirements on a mobile payment
service. These requirements must
be taken into account when a party
designs the security of its mobile
payment service.

page 6

White paper - HCE Security Implications, analyzing the security aspects of HCE

A real-time calculation on a Cloud-based

SE cannot guarantee this kind of

transaction speed. Therefore, Cloud-based

SE solutions typically include a

tokenization mechanism to allow

transactions up to a certain number and

value. Google Wallet for instance deploys

a form of “tokenization”. Section 4.2.3

explains the concept of tokenization.

A fundamental issue with any

Cloud-based SE is how to enable the

handset to securely identify itself to the

cloud. If credentials to the Cloud-based SE

are stored inside the HCE service then this

severely limits the extra security which

can be supplied by the Cloud-based SE

solution. This problem could be solved by

requiring user interaction for accessing

the cloud, which would in turn negatively

impact the user experience. Another

solution could be to use the hardware SE

to authenticate towards the Cloud-based

SE.

4.1.3 TEE

The Trusted Execution Environment is a

separate execution environment that runs

alongside the OS and provides security

services to that environment.

As illustrated in Figure 3, the TEE isolates

access to its hardware and software

security resources from the OS and its

applications. The TEE runs its own separate

OS and therefore is not compromised

when the main OS is rooted. In that way,

the TEE can be used to provide a higher

level of security than the basic approach

described in Section 4.1.1. It does not

reach the security level provided by an SE

because it does not have the SE’s tamper-

resistance.

Note that TEE standardization is not yet

finalized.

4.1.4 UICC or embedded SE

This option offers the most advanced

form of security on the Android device.

It is questionable whether this option in

combination with HCE really makes sense

to an SP, because it seems to provide no

additional advantages over traditional,

SE-based NFC. It adds complexity in the

routing through the Android OS where a

direct link to the SE is available.

4.2 Security mechanisms

A wide range of mechanisms exists to

make applications more secure. We list a

selection of these below. In principle, these

mechanisms can be applied to the four

locations specified above and combined

with each other to provide increased risk

mitigation. Obviously, enhancing the

protection typically leads to extra steps for

the user to execute and/or developer to

implement. There is a trade-off between

security, end-user convenience and costs

that the SP should consider.

4.2.1 User and hardware verification

Payment transactions can be made

more secure by verification of the user

and/or the hardware that is used in

the transaction. Typical verification

mechanisms to enhance security include

the verification of:

• What the user knows (Username/

password combinations, PIN, etc.)

• What the user has. For example Device

ID, smartcard reader, sticker, etc.

• How the user behaves. For instance if a

payment is done in geographically distant

places very quickly after one another, such

payment transactions could be denied.

• Biometrics. The use of biometrics for

user authentication receives increasing

attention, for instance by use of finger-

print-scans, voice- and facial-recognition,

iris-scans, etc.

4.2.2 Transaction constraints

To limit the impact of potential security

breaches, transactions could be limited in

various ways, e.g.:

• Only online transactions (Check

transaction parameters in systems from

the issuing bank)

• Only allowing low value and/or limited

number of transactions per timeframe

• Country limitations

We note that such transaction constraints

cannot be adapted by a malicious user in

a fake app. These transaction constraints

are signed by the issuer with a key that is

not present on the card (and therefore not

present in the app). The constraints can

therefore not be manipulated.

Figure 3: TEE architecture (Source:

GlobalPlatform Inc.)

page 7

White paper - HCE Security Implications, analyzing the security aspects of HCE

4.2.3 Tokenization

In the scope of mobile payments,

Tokenization is often used as a mechanism

to overcome timing issues of Cloud-based

SE solutions. This means that the tokens

need to be stored in the application, where

they are still at risk. However, the use of

a token can be restricted in how they are

used with a specific merchant, device,

number of transactions or category of

transactions. In most cases a token can

be used to authenticate only a limited

number of times. When the tokens are

used new tokens will need to be retrieved.

In this way the risk is limited compared

to the case where all payment details

are stored inside the application. For this

tokenization risk to remain limited it

should only be possible to retrieve tokens

under certain requirements (like user

verification or pushing to the device from

a different environment).

The payment schemes MasterCard, Visa

and American Express are standardizing

a tokenization mechanism for online

and mobile payments8. MasterCard has

announced a first release for mid-20149.

4.2.4 Android OS checks

An Android application is able to verify

system settings and can detect whether a

device is rooted. Given the risks associated

with rooting of a device we would

recommend an HCE service to check for

this kind of settings (developer options

and root access) and take appropriate

action as soon as those settings are

detected.

4.2.5 White-box cryptography

White-box cryptography means that the

key is obfuscated by storing it within code

of the cryptographic algorithm. The aim

is that the key cannot be retrieved even if

the original source code is available. Thus,

in card emulation white-box cryptography

can be used to hide sensitive data within

the card emulation application.

A drawback of white-box cryptography

in the context of card emulation is that

the distribution of NFC card emulation

applications becomes more complex and

costly. The code of each application needs

to be unique as the key is hidden inside

the code. This would require dynamic

loading of source code into the application

at the moment of personalization.

A further drawback is that the

application’s performance may be

impacted by the obfuscation.

5 Potential HCE impact on NFC
ecosystem

HCE might accelerate the introduction

of NFC services, because it provides an

alternative, more-simple-but-less-secure

way to provide an NFC card emulation

service. In this way, it has great added

value for SPs that can accept a reduced

level of security in exchange for an

improvement of other factors such as time

to market, development costs and the

need to cooperate with other parties. In

these cases, HCE would make life for SPs

considerably easier and could eliminate

the role of Secure Element Issuers. The role

of the Trusted Service Manager may also

change significantly with HCE, from the

personalization of an applet on the SE to

personalization of an HCE service.

Thus we can conclude that HCE would

have a substantial impact on the NFC

ecosystem.

Note however that SPs must be fully

aware of the security risks caused by

not using the hardware-based security

provided by the SE. Let’s consider the

example of an open-loop mobile payment

service that allows for high-value

payments and aims for widespread

adaptation. While in those cases the

advantages of using HCE would certainly

be welcome to an SP, using HCE also opens

up the threat for fraudulent exploitation

of this application, as described in this

paper. The sheer value potentially flowing

through the payment application once

the solution sees mass market adoption

makes the potential impact of a security

breach very high. Whether the identified

vulnerabilities are actually exploited

depends to a great extent on the

“business case” for a hack, which obviously

requires thorough analysis as part of a risk

assessment. With these considerations in

mind, the risks associated with HCE could

be considered too high for this example.

For open-loop payment services

specifically the response of payment

schemes plays an important role. Using

HCE Google has already introduced

an SE-less payment application, but

standardization (EMV) and approval from

payment schemes (see box text) would

be required for HCE to become a widely

accepted solution for the full scope of

 8. https://newsroom.mastercard.com/press-releases/mastercard-visa-and-american-express-
propose-new-global-standard-to-make-online-and-mobile-shopping-simpler-and-safer/

9. MasterCard Global Operations Bulletin No. 12, 2 December 2013

open-loop payment services that we are used to from the physical banking cards. It is

uncertain at this point how major payment SPs (banks) as well as payment schemes

respond to HCE.

On the other hand, for services such as low-value closed-loop payment the advantages

introduced by HCE may outweigh the risks.

It is important to realize that a major security breach of HCE-based payments could

impact the sector as a whole. Such a breach could negatively influence the perception

by consumers of mobile payments and NFC card emulation in general, regardless of

whether the breach was limited to HCE security risks only or could also occur in SE-based

card emulation solutions.

6 Conclusion

Certainly HCE is an important development in the world of NFC on mobile handsets. It

“democratizes” NFC Card Emulation, as it no longer requires access to an SE and thereby

introduces an optional degree of freedom for SPs. The access to the SE is often identified

as a major challenge in the business plan of SPs. At the same time, any SP planning to go

the HCE route will have to consider the security implications of by-passing the security

provided by the SE. Android OS by itself is not a secure location to store sensitive data.

Risks can be reduced by possible countermeasures such as devaluating stored data (e.g.

by making it valid for a single transaction only) and/or storing data in other locations.

For some services SPs may consider the security risks caused by the by-passing of the

SE’s hardware-based security too high. For instance for high-value open-loop payment

systems this could be the case. For other services – such as low-value closed-loop

payment systems – these risks may be acceptable. Note that for open-loop payment

services approval from payment schemes would be required for HCE to become a widely

accepted solution.

Overall, UL believes that HCE will accelerate the introduction of NFC services by providing

an alternative, more-simple-but-less-secure way to provide an NFC card emulation

service.

Certification

The card networks such as

MasterCard and Visa have prescribed

clear implementation guidelines

with which card issuers must comply.

The presence and use of an SE is

generally a key requirement in these

guidelines. For example, MasterCard

state the following in their Mobile

PayPass Issuer Implementation

Guide10: “A mandatory requirement

of the Mobile PayPass program is that

the Mobile PayPass application on

the mobile handset must be stored

and executed within an approved

SE” and “The mobile phone itself is

not considered a secure personal

device and therefore any payment

processing must occur within the

SE.” Visa has equivalent certification

requirements for payWave.

page 8

White paper - HCE Security Implications, analyzing the security aspects of HCE

 10. Version 10 July 2013

page 9

Contact details

UL Transaction Security

info@ul-ts.com

www.ul-ts.com

